Database
Algolia
Overview
Algolia is a cloud-based SaaS search and discovery service. With a proven track record supporting over 18,000 customers worldwide and 1.7 trillion searches annually, it provides a fast and powerful AI search engine. Using proprietary NeuralSearch technology, it processes natural language processing and keyword searches in parallel, returning optimal search results in milliseconds. It offers InstantSearch libraries and rich APIs that dramatically improve search experiences for e-commerce sites, apps, and websites.
Details
Algolia was founded in France in 2012 and has grown to become the world's largest search platform. Unlike traditional on-premises search solutions, it's designed entirely as a cloud-based service, requiring no infrastructure management and allowing immediate use. It received high ratings in the search and product discovery category in Gartner's 2025 Critical Capabilities Report.
Key features of Algolia:
- AI Search Engine (NeuralSearch)
- InstantSearch library suite
- RESTful API
- Real-time synchronization and indexing
- Fast response (millisecond level)
- Geographic search and filtering
- Personalization and recommendations
- A/B testing functionality
- Analytics and insights dashboard
- Multi-language support
- Rich SDKs (JavaScript, React, Vue.js, Python, PHP, etc.)
Pros and Cons
Pros
- High-Speed Search: Ultra-fast response in milliseconds
- Easy Implementation: Immediate use as SaaS service
- Rich UI: Easy search UI construction with InstantSearch libraries
- AI Features: Intent understanding and vector search with NeuralSearch
- Scalability: Auto-scaling to handle traffic spikes
- Multi-language Support: Optimal for global expansion
- Detailed Analytics: Real-time analytics and A/B testing features
- Rich SDKs: Support for major programming languages and frameworks
Cons
- Cost: Pay-per-search-request pricing can be expensive for large-scale use
- Vendor Lock-in: Dependency on Algolia's proprietary APIs
- Data Control: Complete data control is difficult with SaaS
- Customization Limits: Limited customization of proprietary search algorithms
- Communication Dependency: Internet connection required
- Complex Pricing: Budget planning can be difficult depending on use case
Key Links
Code Examples
Client Initialization
// Basic client initialization
import { algoliasearch } from 'algoliasearch';
const client = algoliasearch('YOUR_APP_ID', 'YOUR_API_KEY');
// Lite client (search only)
import { liteClient } from 'algoliasearch/lite';
const searchClient = liteClient('YOUR_APP_ID', 'YOUR_SEARCH_ONLY_API_KEY');
// CDN usage
// <script src="https://cdn.jsdelivr.net/npm/algoliasearch@5/dist/algoliasearch.umd.js"></script>
Basic Search Operations
// Access to index
const index = client.initIndex('products');
// Add document
await index.saveObject({
objectID: 'product_1',
name: 'iPhone 15',
category: 'Electronics',
price: 999,
description: 'Latest iPhone series',
brand: 'Apple',
tags: ['smartphone', 'mobile', 'apple']
});
// Bulk add multiple documents
await index.saveObjects([
{
objectID: 'product_2',
name: 'MacBook Pro',
category: 'Computers',
price: 1999,
description: 'Professional laptop for professionals',
brand: 'Apple'
},
{
objectID: 'product_3',
name: 'Samsung Galaxy',
category: 'Electronics',
price: 899,
description: 'Android smartphone',
brand: 'Samsung'
}
]);
// Search execution
const searchResults = await index.search('iPhone');
console.log(searchResults.hits);
// Search with parameters
const results = await index.search('smartphone', {
filters: 'category:Electronics',
facets: ['brand', 'price'],
hitsPerPage: 20,
page: 0,
attributesToRetrieve: ['name', 'price', 'description']
});
InstantSearch (JavaScript)
<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/instantsearch.css@8/themes/algolia-min.css">
</head>
<body>
<div id="searchbox"></div>
<div id="hits"></div>
<div id="pagination"></div>
<script src="https://cdn.jsdelivr.net/npm/algoliasearch@5/dist/lite/builds/browser.umd.js"></script>
<script src="https://cdn.jsdelivr.net/npm/instantsearch.js@4"></script>
<script>
// 1. Initialize search client
const search = instantsearch({
indexName: 'products',
searchClient: algoliasearch('YOUR_APP_ID', 'YOUR_SEARCH_API_KEY'),
});
// 2. Add widgets
search.addWidgets([
// Search box
instantsearch.widgets.searchBox({
container: '#searchbox',
placeholder: 'Search products...',
}),
// Display search results
instantsearch.widgets.hits({
container: '#hits',
templates: {
item: (hit, { html, components }) => html`
<div class="hit">
<h3>${components.Highlight({ attribute: 'name', hit })}</h3>
<p>${components.Snippet({ attribute: 'description', hit })}</p>
<p class="price">$${hit.price.toLocaleString()}</p>
</div>
`,
},
}),
// Pagination
instantsearch.widgets.pagination({
container: '#pagination',
}),
]);
// 3. Start search
search.start();
</script>
</body>
</html>
React InstantSearch
import React from 'react';
import { liteClient as algoliasearch } from 'algoliasearch/lite';
import {
InstantSearch,
SearchBox,
Hits,
RefinementList,
Pagination,
Configure
} from 'react-instantsearch';
const searchClient = algoliasearch('YOUR_APP_ID', 'YOUR_SEARCH_API_KEY');
// Custom hit component
function Hit({ hit }) {
return (
<div className="hit">
<h3>{hit.name}</h3>
<p>{hit.description}</p>
<p className="price">${hit.price.toLocaleString()}</p>
<p className="brand">{hit.brand}</p>
</div>
);
}
function App() {
return (
<InstantSearch searchClient={searchClient} indexName="products">
<Configure hitsPerPage={12} />
<div className="search-container">
<SearchBox placeholder="Search products..." />
<div className="content">
<div className="sidebar">
<h3>Brand</h3>
<RefinementList attribute="brand" />
<h3>Category</h3>
<RefinementList attribute="category" />
</div>
<div className="results">
<Hits hitComponent={Hit} />
<Pagination />
</div>
</div>
</div>
</InstantSearch>
);
}
export default App;
Index Settings and Customization
// Update index settings
await index.setSettings({
// Specify searchable attributes (in priority order)
searchableAttributes: [
'name,description', // Same priority
'unordered(brand)', // Order not considered
'category'
],
// Attribute importance settings
customRanking: [
'desc(popularity)', // Popularity (descending)
'asc(price)' // Price (ascending)
],
// Facet settings
attributesForFaceting: [
'brand',
'category',
'filterOnly(internal_id)', // Filtering only
'searchable(tags)' // Searchable facet
],
// Highlight settings
attributesToHighlight: ['name', 'description'],
// Snippet settings
attributesToSnippet: ['description:50'],
// Language settings
ignorePlurals: ['ja', 'en'],
// Synonyms and stop words
synonyms: [
['smartphone', 'mobile', 'phone'],
['pc', 'computer', 'laptop']
]
});
// Rule settings (conditional boost)
await index.saveRule({
objectID: 'brand_boost',
condition: {
pattern: 'apple',
anchoring: 'contains'
},
consequence: {
promote: [
{ objectID: 'product_1', position: 0 },
{ objectID: 'product_2', position: 1 }
]
}
});
Analytics and Insights
// Search analytics API
import { analyticsClient } from '@algolia/client-analytics';
const analytics = analyticsClient('YOUR_APP_ID', 'YOUR_API_KEY');
// Get top search queries
const topSearches = await analytics.getTopSearches({
index: 'products',
startDate: '2024-01-01',
endDate: '2024-01-31'
});
// Send click events
import { insightsClient } from '@algolia/client-insights';
const insights = insightsClient('YOUR_APP_ID', 'YOUR_API_KEY');
// Track product clicks
await insights.clickedObjectIDs({
eventName: 'Product Clicked',
userToken: 'user123',
index: 'products',
objectIDs: ['product_1']
});
// Track purchase conversions
await insights.convertedObjectIDs({
eventName: 'Product Purchased',
userToken: 'user123',
index: 'products',
objectIDs: ['product_1']
});
A/B Testing
// A/B testing client
import { abtestingClient } from '@algolia/client-abtesting';
const abTesting = abtestingClient('YOUR_APP_ID', 'YOUR_API_KEY');
// Create A/B test
await abTesting.addABTest({
name: 'Search Relevance Test',
variants: [
{
index: 'products_variant_a',
trafficPercentage: 50,
description: 'Original ranking'
},
{
index: 'products_variant_b',
trafficPercentage: 50,
description: 'Boosted brand ranking'
}
],
endAt: '2024-12-31T23:59:59Z'
});
// Get test results
const testResults = await abTesting.getABTest(12345);
console.log(testResults.variants);
Recommendations
// Recommend client
import { recommendClient } from '@algolia/recommend';
const recommend = recommendClient('YOUR_APP_ID', 'YOUR_API_KEY');
// Get related products
const relatedProducts = await recommend.getRelatedProducts([
{
indexName: 'products',
objectID: 'product_1',
maxRecommendations: 5
}
]);
// Frequently bought together
const frequentlyBought = await recommend.getFrequentlyBoughtTogether([
{
indexName: 'products',
objectID: 'product_1',
maxRecommendations: 3
}
]);
// Trending products
const trending = await recommend.getTrendingItems([
{
indexName: 'products',
maxRecommendations: 10,
facetFilters: ['category:Electronics']
}
]);
Multi-language Search
// Japanese index settings
await japaneseIndex.setSettings({
searchableAttributes: ['name_ja', 'description_ja'],
attributesToHighlight: ['name_ja', 'description_ja'],
ignorePlurals: ['ja'],
// Japanese-specific settings
advancedSyntax: true,
queryLanguages: ['ja'],
// Custom dictionary (hiragana/katakana support)
synonyms: [
['computer', 'コンピュータ', 'コンピューター', 'PC'],
['smartphone', 'スマートフォン', 'スマホ', '携帯']
]
});
// Multi-language search
const multilingualSearch = async (query, language = 'en') => {
const indexName = `products_${language}`;
const index = client.initIndex(indexName);
return await index.search(query, {
attributesToRetrieve: [`name_${language}`, `description_${language}`, 'price'],
filters: `language:${language}`
});
};