msgspec
Library
msgspec
Overview
msgspec is a high-performance serialization and validation library for Python. Supporting multiple data formats including JSON, MessagePack, YAML, and TOML, it provides zero-cost type validation leveraging Python's type annotations. Implemented as a C extension, msgspec delivers exceptional processing speed and memory efficiency compared to other Python serialization libraries.
Details
Key Features
-
Multi-format Support
- Support for JSON, MessagePack, YAML, and TOML formats
- Optimized encoders/decoders for each protocol
- Fully compliant implementations with standard specifications
-
Fast Type Validation
- Seamless type validation during decoding
- Schema definition using Python type annotations
- Detailed error messages for validation failures
-
Struct Type System
- Structured data type that's 5-60x faster than dataclasses or attrs
- Memory-efficient implementation
- Flexible customization through optional settings
-
Extensible Type Support
- Wide support from basic to complex types
- Custom type implementation capabilities
- Detailed validation rules through constraints
Performance Characteristics
- Encode/Decode Speed: 10-80x faster than alternative libraries
- Memory Usage: Fraction of memory compared to pydantic or cattrs
- Validated Decoding: Faster than orjson's decode-only operation
- Struct Operations: 4-17x faster for instance creation, 4-30x faster for comparisons
Advantages and Disadvantages
Advantages
-
Outstanding Performance
- Optimized implementation via C extension
- Consistently fastest in benchmarks
- High-speed operation even with large datasets
-
Memory Efficiency
- Minimal memory usage
- Efficient garbage collection
- Excellent memory efficiency for large JSON decoding
-
Zero-cost Type Validation
- Automatic type validation during decoding
- No additional overhead
- Balance of type safety and performance
-
Lightweight Dependencies
- No required external dependencies
- Small disk footprint
- Easy installation and deployment
-
Enhanced Developer Experience
- Intuitive schema definition with type annotations
- Detailed error messages
- Excellent documentation and examples
Disadvantages
-
Learning Curve
- Unique Struct type concepts
- Fine-tuning required for performance optimization
- Migration cost from other libraries
-
Ecosystem
- Not as extensive ecosystem as pydantic or marshmallow
- Limited third-party tool support
- Relatively smaller community resources
-
Strict Type Validation
- Strict mode by default (no implicit type conversion)
- Additional configuration needed for flexibility
- Care needed when integrating with legacy systems
Reference Pages
Official Sites
Benchmarks & Comparisons
Tutorials & Explanations
Code Examples
Hello World - Basic Usage
import msgspec
# Basic encode/decode
data = {"hello": "world", "number": 42}
# JSON format
json_encoded = msgspec.json.encode(data)
print(json_encoded) # b'{"hello":"world","number":42}'
json_decoded = msgspec.json.decode(json_encoded)
print(json_decoded) # {'hello': 'world', 'number': 42}
# MessagePack format
msgpack_encoded = msgspec.msgpack.encode(data)
msgpack_decoded = msgspec.msgpack.decode(msgpack_encoded)
Structured Data with Struct Types
import msgspec
from typing import Optional, Set
# Define a Struct type
class User(msgspec.Struct):
"""Struct representing user information"""
name: str
age: int
email: Optional[str] = None
groups: Set[str] = set()
# Create an instance
alice = User(
name="Alice",
age=30,
email="[email protected]",
groups={"admin", "engineering"}
)
# JSON encoding
msg = msgspec.json.encode(alice)
print(msg)
# b'{"name":"Alice","age":30,"email":"[email protected]","groups":["admin","engineering"]}'
# Type-specific decoding
decoded_user = msgspec.json.decode(msg, type=User)
print(decoded_user) # User(name='Alice', age=30, email='[email protected]', groups={'admin', 'engineering'})
Type Validation and Error Handling
import msgspec
class Product(msgspec.Struct):
id: int
name: str
price: float
in_stock: bool = True
# Valid data
valid_json = b'{"id": 1, "name": "Laptop", "price": 999.99}'
product = msgspec.json.decode(valid_json, type=Product)
print(product) # Product(id=1, name='Laptop', price=999.99, in_stock=True)
# Invalid type data
invalid_json = b'{"id": "ABC", "name": "Laptop", "price": 999.99}'
try:
msgspec.json.decode(invalid_json, type=Product)
except msgspec.ValidationError as e:
print(f"Validation error: {e}")
# Validation error: Expected `int`, got `str` - at `$.id`
Advanced Constraints
import msgspec
from typing import Annotated
from msgspec import Meta
# Type definition with constraints
class Employee(msgspec.Struct):
# Name with 1-50 characters
name: Annotated[str, Meta(min_length=1, max_length=50)]
# Age between 18-65
age: Annotated[int, Meta(ge=18, le=65)]
# Positive salary
salary: Annotated[float, Meta(gt=0)]
# Maximum 10 departments
departments: Annotated[Set[str], Meta(max_length=10)] = set()
# Validation execution
try:
# Age out of range
emp_json = b'{"name": "Bob", "age": 16, "salary": 50000}'
msgspec.json.decode(emp_json, type=Employee)
except msgspec.ValidationError as e:
print(f"Validation error: {e}")
# Validation error: Expected `int` >= 18 - at `$.age`
Performance Optimization
import msgspec
# Reuse encoders/decoders
encoder = msgspec.json.Encoder()
decoder = msgspec.json.Decoder(type=User)
# Process multiple messages
users = [
User("Alice", 30, "[email protected]"),
User("Bob", 25, "[email protected]"),
User("Charlie", 35)
]
# Encoding
encoded_messages = [encoder.encode(user) for user in users]
# Decoding
decoded_users = [decoder.decode(msg) for msg in encoded_messages]
# Further optimization with array_like=True
class OptimizedUser(msgspec.Struct, array_like=True):
name: str
age: int
email: Optional[str] = None
# Compact representation without field names
opt_user = OptimizedUser("David", 28, "[email protected]")
compact_msg = msgspec.json.encode(opt_user)
print(compact_msg) # b'["David",28,"[email protected]"]'
# Omit defaults with omit_defaults=True
class ConfigurableUser(msgspec.Struct, omit_defaults=True):
name: str
active: bool = True
role: str = "user"
user = ConfigurableUser("Eve")
minimal_msg = msgspec.json.encode(user)
print(minimal_msg) # b'{"name":"Eve"}'
Multi-format Conversion
import msgspec
# Data definition
class Message(msgspec.Struct):
id: int
content: str
timestamp: float
# Original message
msg = Message(id=1, content="Hello msgspec!", timestamp=1234567890.123)
# Convert to various formats
json_data = msgspec.json.encode(msg)
msgpack_data = msgspec.msgpack.encode(msg)
yaml_data = msgspec.yaml.encode(msg)
toml_data = msgspec.toml.encode(msg)
# Convert between formats
# JSON → MessagePack
json_decoded = msgspec.json.decode(json_data, type=Message)
msgpack_from_json = msgspec.msgpack.encode(json_decoded)
# MessagePack → YAML
msgpack_decoded = msgspec.msgpack.decode(msgpack_data, type=Message)
yaml_from_msgpack = msgspec.yaml.encode(msgpack_decoded)
print(f"JSON: {json_data}")
print(f"YAML:\n{yaml_data.decode()}")
print(f"TOML:\n{toml_data.decode()}")
Custom Type Extensions
import msgspec
import struct
from typing import Any
# MessagePack extension type implementation example
COMPLEX_TYPE_CODE = 1
def enc_hook(obj: Any) -> Any:
"""Encode complex numbers as MessagePack extension type"""
if isinstance(obj, complex):
data = struct.pack('dd', obj.real, obj.imag)
return msgspec.msgpack.Ext(COMPLEX_TYPE_CODE, data)
raise NotImplementedError(f"Type {type(obj)} not supported")
def ext_hook(code: int, data: memoryview) -> Any:
"""Decode MessagePack extension type to complex numbers"""
if code == COMPLEX_TYPE_CODE:
real, imag = struct.unpack('dd', data)
return complex(real, imag)
raise NotImplementedError(f"Extension type {code} not supported")
# Create custom encoder/decoder
encoder = msgspec.msgpack.Encoder(enc_hook=enc_hook)
decoder = msgspec.msgpack.Decoder(ext_hook=ext_hook)
# Process data containing complex numbers
data = {
"values": [1+2j, 3-4j, 5.5+0j],
"label": "complex numbers"
}
encoded = encoder.encode(data)
decoded = decoder.decode(encoded)
print(decoded) # {'values': [(1+2j), (3-4j), (5.5+0j)], 'label': 'complex numbers'}
msgspec is an ideal serialization library for performance-critical Python applications. It particularly excels in APIs handling large volumes of data, microservices, and data processing pipelines. When you need both type safety and performance, msgspec is an excellent choice.