Apache Ignite

Distributed database, caching, and processing platform. Integrates SQL, NoSQL, and computing with memory-centric approach. ACID and transaction support.

cache-serverdistributed-databasein-memoryJavaNoSQLSQLACIDbig-datareal-time-processing

Apache Ignite

Apache Ignite is a unified in-memory computing platform that functions as a distributed database, caching, and processing platform. It integrates SQL, NoSQL, and computing with a memory-centric approach while supporting ACID-compliant transaction processing.

Overview

Apache Ignite is an in-memory platform with modular architecture designed for high-performance distributed computing and data storage. With rapidly expanding adoption in big data processing and real-time analytics, it maintains high reliability as an Apache Software Foundation top-level project. Beyond traditional cache solutions, it serves as a comprehensive platform that can function as a complete database.

Features

Key Capabilities

Apache Ignite provides the following core functionalities:

  • Unified Platform: Integrates database, cache, and compute processing in a single platform
  • ACID Compliant: Supports full ACID-compliant transaction processing
  • SQL Support: Supports both standard SQL queries and NoSQL key-value operations
  • Distributed Architecture: Achieves horizontal scaling and high availability
  • Persistence: Can persist in-memory data to disk
  • Machine Learning: Provides in-memory machine learning algorithms

Architecture

Apache Ignite's core architecture consists of the following main layers:

  • IgniteKernal: Main implementation of Ignite API and lifecycle control
  • GridKernalContext: Central context for all managers and processors
  • Managers: Node discovery, communication, deployment, event management
  • Processors: Specific functions like cache management, query processing, service management

Performance Characteristics

  • Ultra-fast data access through in-memory processing
  • Scalability to hundreds of nodes
  • Low-latency real-time processing
  • High throughput through distributed data grid

Pros and Cons

Advantages

  • Unified Platform: Integrates database, cache, and compute processing in one solution
  • High Performance: Extremely fast data access and processing through in-memory operation
  • Enterprise Features: Meets enterprise requirements with ACID compliance, transactions, SQL support
  • High Scalability: Horizontal scaling possible to hundreds of nodes
  • Rich Functionality: Advanced features like machine learning, stream processing, distributed computing
  • Strong Reliability: Stability as an Apache Software Foundation project

Disadvantages

  • Complexity: Configuration and operational complexity due to rich features
  • Memory Requirements: Requires large memory resources
  • Learning Curve: Time-consuming to master due to extensive features
  • Java Dependency: Requires Java environment with high runtime dependencies
  • Operational Difficulty: Challenging to manage as a distributed system
  • Resource Consumption: Higher CPU and memory usage than other cache solutions

References

Code Examples

Installation and Setup

# Download Apache Ignite binary
wget https://archive.apache.org/dist/ignite/2.16.0/apache-ignite-2.16.0-bin.zip
unzip apache-ignite-2.16.0-bin.zip
cd apache-ignite-2.16.0-bin

# Set environment variables
export IGNITE_HOME=/path/to/apache-ignite-2.16.0-bin
export PATH=$IGNITE_HOME/bin:$PATH

# Start Ignite node
$IGNITE_HOME/bin/ignite.sh

# Or start with configuration file
$IGNITE_HOME/bin/ignite.sh config/default-config.xml

Basic Cache Operations (Java)

import org.apache.ignite.Ignite;
import org.apache.ignite.IgniteCache;
import org.apache.ignite.Ignition;
import org.apache.ignite.configuration.CacheConfiguration;
import org.apache.ignite.configuration.IgniteConfiguration;

public class IgniteCacheExample {
    public static void main(String[] args) {
        // Create Ignite configuration
        IgniteConfiguration cfg = new IgniteConfiguration();
        cfg.setClientMode(false); // Server mode

        // Cache configuration
        CacheConfiguration<Integer, String> cacheCfg = new CacheConfiguration<>("myCache");
        cacheCfg.setIndexedTypes(Integer.class, String.class);
        cfg.setCacheConfiguration(cacheCfg);

        // Start Ignite node
        try (Ignite ignite = Ignition.start(cfg)) {
            // Get cache
            IgniteCache<Integer, String> cache = ignite.cache("myCache");

            // Insert data
            cache.put(1, "Hello, Ignite!");
            cache.put(2, "Apache Ignite is awesome");

            // Retrieve data
            String value1 = cache.get(1);
            String value2 = cache.get(2);

            System.out.println("Key 1: " + value1);
            System.out.println("Key 2: " + value2);

            // Display all keys
            cache.forEach((key, value) -> {
                System.out.println("Key: " + key + ", Value: " + value);
            });
        }
    }
}

SQL Query Execution

import org.apache.ignite.cache.query.SqlFieldsQuery;
import java.util.List;

// Create SQL table
cache.query(new SqlFieldsQuery(
    "CREATE TABLE IF NOT EXISTS Person (" +
    "id INT PRIMARY KEY, " +
    "name VARCHAR, " +
    "age INT)"
)).getAll();

// Insert data
cache.query(new SqlFieldsQuery(
    "INSERT INTO Person (id, name, age) VALUES (?, ?, ?)")
    .setArgs(1, "John Doe", 30)
).getAll();

cache.query(new SqlFieldsQuery(
    "INSERT INTO Person (id, name, age) VALUES (?, ?, ?)")
    .setArgs(2, "Jane Smith", 25)
).getAll();

// Execute SQL query
List<List<?>> results = cache.query(new SqlFieldsQuery(
    "SELECT name, age FROM Person WHERE age > ?")
    .setArgs(20)
).getAll();

// Display results
for (List<?> row : results) {
    System.out.println("Name: " + row.get(0) + ", Age: " + row.get(1));
}

Persistence Configuration

import org.apache.ignite.configuration.DataRegionConfiguration;
import org.apache.ignite.configuration.DataStorageConfiguration;

// Data storage configuration
DataStorageConfiguration dataStorageCfg = new DataStorageConfiguration();

// Enable persistence for default data region
DataRegionConfiguration defaultRegion = new DataRegionConfiguration();
defaultRegion.setName("Default_Region");
defaultRegion.setPersistenceEnabled(true);
defaultRegion.setMaxSize(100L * 1024 * 1024); // 100 MB

dataStorageCfg.setDefaultDataRegionConfiguration(defaultRegion);

// WAL (Write-Ahead Log) configuration
dataStorageCfg.setWalMode(WALMode.LOG_ONLY);
dataStorageCfg.setWalSegmentSize(64 * 1024 * 1024); // 64 MB

// Add to Ignite configuration
IgniteConfiguration cfg = new IgniteConfiguration();
cfg.setDataStorageConfiguration(dataStorageCfg);

// Start Ignite node and enable persistence
try (Ignite ignite = Ignition.start(cfg)) {
    // Enable persistence (required only on first start)
    ignite.cluster().state(ClusterState.ACTIVE);
    
    System.out.println("Ignite with persistence enabled");
}

Distributed Computing

import org.apache.ignite.compute.ComputeJob;
import org.apache.ignite.compute.ComputeJobResult;
import org.apache.ignite.compute.ComputeTask;
import java.util.Collection;
import java.util.List;
import java.util.Map;

// Define distributed computation task
public class DistributedWordCountTask extends ComputeTask<String, Integer> {
    
    @Override
    public Map<? extends ComputeJob, ClusterNode> map(
            List<ClusterNode> nodes, String text) {
        Map<ComputeJob, ClusterNode> map = new HashMap<>();
        
        String[] words = text.split(" ");
        int wordsPerNode = words.length / nodes.size();
        
        for (int i = 0; i < nodes.size(); i++) {
            int startIdx = i * wordsPerNode;
            int endIdx = (i == nodes.size() - 1) ? words.length : (i + 1) * wordsPerNode;
            
            String[] nodeWords = Arrays.copyOfRange(words, startIdx, endIdx);
            map.put(new WordCountJob(nodeWords), nodes.get(i));
        }
        
        return map;
    }
    
    @Override
    public Integer reduce(List<ComputeJobResult> results) {
        int totalWords = 0;
        for (ComputeJobResult result : results) {
            totalWords += result.<Integer>getData();
        }
        return totalWords;
    }
    
    private static class WordCountJob implements ComputeJob {
        private String[] words;
        
        public WordCountJob(String[] words) {
            this.words = words;
        }
        
        @Override
        public Integer execute() {
            return words.length;
        }
        
        @Override
        public void cancel() {
            // Cancellation handling
        }
    }
}

// Execute distributed computation
String text = "Apache Ignite is a powerful distributed computing platform";
Integer wordCount = ignite.compute().execute(DistributedWordCountTask.class, text);
System.out.println("Total word count: " + wordCount);

Cluster Configuration

import org.apache.ignite.spi.discovery.tcp.TcpDiscoverySpi;
import org.apache.ignite.spi.discovery.tcp.ipfinder.vm.TcpDiscoveryVmIpFinder;

// Configure cluster discovery
TcpDiscoverySpi discoverySpi = new TcpDiscoverySpi();
TcpDiscoveryVmIpFinder ipFinder = new TcpDiscoveryVmIpFinder();
ipFinder.setAddresses(Arrays.asList(
    "192.168.1.100:47500..47509",
    "192.168.1.101:47500..47509",
    "192.168.1.102:47500..47509"
));
discoverySpi.setIpFinder(ipFinder);

IgniteConfiguration cfg = new IgniteConfiguration();
cfg.setDiscoverySpi(discoverySpi);

// Set cluster name
cfg.setIgniteInstanceName("my-ignite-cluster");

// Network configuration
cfg.setLocalHost("192.168.1.100");
cfg.setWorkDirectory("/opt/ignite/work");

try (Ignite ignite = Ignition.start(cfg)) {
    System.out.println("Cluster started. Topology: " + 
        ignite.cluster().nodes().size() + " nodes");
    
    // Display cluster information
    for (ClusterNode node : ignite.cluster().nodes()) {
        System.out.println("Node: " + node.id() + 
            ", Address: " + node.addresses());
    }
}

Basic Machine Learning Example

import org.apache.ignite.ml.dataset.DatasetBuilder;
import org.apache.ignite.ml.dataset.impl.local.LocalDatasetBuilder;
import org.apache.ignite.ml.math.primitives.vector.Vector;
import org.apache.ignite.ml.preprocessing.Preprocessor;
import org.apache.ignite.ml.selection.scoring.evaluator.Evaluator;
import org.apache.ignite.ml.tree.DecisionTreeClassificationTrainer;

// Prepare data
Map<Integer, Vector> data = new HashMap<>();
data.put(0, VectorUtils.of(1.0, 2.0));
data.put(1, VectorUtils.of(2.0, 3.0));
data.put(2, VectorUtils.of(3.0, 1.0));

// Prepare labels
Map<Integer, Double> labels = new HashMap<>();
labels.put(0, 1.0);
labels.put(1, 1.0);
labels.put(2, 0.0);

// Train decision tree classifier
DecisionTreeClassificationTrainer trainer = new DecisionTreeClassificationTrainer(5, 0);

DecisionTreeModel model = trainer.fit(
    ignite,
    cache,
    (k, v) -> VectorUtils.of(/* feature extraction */),
    (k, v) -> /* label extraction */ 1.0
);

// Execute prediction
Vector newData = VectorUtils.of(2.5, 2.5);
Double prediction = model.predict(newData);
System.out.println("Prediction: " + prediction);

Apache Ignite, with its comprehensive feature set, serves as a powerful solution for various use cases ranging from simple caching to complex distributed databases and machine learning platforms.