DragonflyDB
Modern Redis & Memcached replacement. Multi-threaded architecture achieves linear scaling. 4.5x higher throughput and scalability according to CPU cores.
DragonflyDB
DragonflyDB is a next-generation in-memory data store developed as a modern Redis & Memcached alternative. With multi-threaded architecture achieving linear scaling, it provides 4.5x higher throughput and scalability according to CPU cores compared to traditional solutions.
Overview
DragonflyDB is positioned as the most promising next-generation cache solution in 2024. It excels in high-concurrency, CPU-intensive workloads and fundamentally solves Redis's single-thread bottleneck by achieving linear performance improvements with CPU core scaling. By adopting Redis-compatible protocol, migration from existing Redis clients is straightforward, enabling performance improvements with minimal changes.
Features
Key Capabilities
- Multi-threaded Architecture: Linear performance improvement according to CPU core count
- Redis Compatibility: Use existing Redis client libraries directly
- High Throughput: 4.5x+ processing performance compared to traditional Redis
- Memory Efficiency: Optimized memory usage patterns
- Snapshot Consistency: Advanced snapshot functionality ensuring data integrity
- Modern C++ Implementation: Efficient system design with modern C++
Architecture Characteristics
DragonflyDB's technical advantages:
- Share-Nothing Architecture: Each thread manages independent data regions
- Fiber-Based: Lightweight cooperative multitasking
- Efficient Memory Management: Elimination of GC overhead
- Optimized Data Structures: Internal structures specialized for CPU-intensive processing
Performance Characteristics
- Processing capacity of 300,000+ requests/second
- Scalability proportional to CPU core count
- Optimized memory usage
- Stable operation with low latency
Pros and Cons
Advantages
- Outstanding Performance: 4.5x+ higher throughput than Redis
- Linear Scaling: Reliable performance improvement with CPU core increase
- Easy Migration: Simple migration process with Redis-compatible protocol
- High Concurrency: Efficient handling of massive simultaneous client connections
- Memory Efficiency: High capacity through optimized memory usage
- Modern Design: Future-proof architecture with latest technology
Disadvantages
- Emerging Technology: Limited long-term stability track record due to recent origin
- Ecosystem: Fewer third-party tools compared to Redis
- Learning Curve: Need to accumulate unique operational knowledge
- Community: Smaller community compared to Redis
- Feature Limitations: Some Redis features may not be implemented
- Compatibility Risk: Limitations in complete Redis compatibility guarantee
References
Code Examples
Installation Using Docker
# Start DragonflyDB container (Linux)
docker run --network=host --ulimit memlock=-1 docker.dragonflydb.io/dragonflydb/dragonfly
# Port mapping for macOS
docker run -p 6379:6379 --ulimit memlock=-1 docker.dragonflydb.io/dragonflydb/dragonfly
# Start with configuration options
docker run -p 6379:6379 --ulimit memlock=-1 \
docker.dragonflydb.io/dragonflydb/dragonfly \
--logtostderr --requirepass=youshallnotpass --cache_mode=true \
--maxmemory=4gb --keys_output_limit=12288
Installation from Binary
# Download binary
wget https://github.com/dragonflydb/dragonfly/releases/latest/download/dragonfly-x86_64
chmod +x dragonfly-x86_64
# Basic startup
./dragonfly-x86_64
# Start with configuration options
./dragonfly-x86_64 --logtostderr --requirepass=mypassword \
--cache_mode=true --dbnum=1 --bind=localhost --port=6379 \
--maxmemory=8gb --keys_output_limit=12288 --dbfilename=dump.rdb
Basic Operations with Redis-cli
# Connect to DragonflyDB
redis-cli -h localhost -p 6379
# With authentication
redis-cli -h localhost -p 6379 -a youshallnotpass
# Basic key-value operations
127.0.0.1:6379> SET hello world
OK
127.0.0.1:6379> GET hello
"world"
127.0.0.1:6379> KEYS *
1) "hello"
# Set data with expiration
127.0.0.1:6379> SETEX temp_key 300 "temporary value"
OK
127.0.0.1:6379> TTL temp_key
(integer) 296
# List operations
127.0.0.1:6379> LPUSH tasks "task1" "task2" "task3"
(integer) 3
127.0.0.1:6379> LRANGE tasks 0 -1
1) "task3"
2) "task2"
3) "task1"
# Hash operations
127.0.0.1:6379> HSET user:1000 name "John Doe" email "[email protected]" age 30
(integer) 3
127.0.0.1:6379> HGETALL user:1000
1) "name"
2) "John Doe"
3) "email"
4) "[email protected]"
5) "age"
6) "30"
# Set operations
127.0.0.1:6379> SADD tags "cache" "database" "performance"
(integer) 3
127.0.0.1:6379> SMEMBERS tags
1) "performance"
2) "database"
3) "cache"
Using Python Client
import redis
import time
# Connect to DragonflyDB
r = redis.Redis(host='localhost', port=6379, decode_responses=True)
# With authentication if required
# r = redis.Redis(host='localhost', port=6379, password='youshallnotpass', decode_responses=True)
# Basic operations
r.set('user:session:123', 'active')
session_status = r.get('user:session:123')
print(f"Session status: {session_status}")
# Key with expiration
r.setex('temp_data', 60, 'this will expire in 60 seconds')
# Multiple key-value operations
user_data = {
'user:1:name': 'Alice',
'user:1:email': '[email protected]',
'user:1:last_login': str(int(time.time()))
}
r.mset(user_data)
# User data using hash
r.hset('user:profile:1', mapping={
'name': 'Bob Smith',
'email': '[email protected]',
'department': 'Engineering',
'join_date': '2024-01-15'
})
profile = r.hgetall('user:profile:1')
print(f"User profile: {profile}")
# Task queue using list
r.lpush('task_queue', 'process_payment', 'send_email', 'update_inventory')
# Process tasks
while True:
task = r.brpop('task_queue', timeout=5)
if task:
queue_name, task_name = task
print(f"Processing task: {task_name}")
# Process task here
time.sleep(1) # Simulate processing time
else:
print("No tasks available")
break
# Tag management using sets
r.sadd('article:1:tags', 'python', 'database', 'performance')
r.sadd('article:2:tags', 'python', 'web', 'api')
# Find common tags
common_tags = r.sinter('article:1:tags', 'article:2:tags')
print(f"Common tags: {common_tags}")
Using Node.js Client
const redis = require('redis');
// Create DragonflyDB client
const client = redis.createClient({
host: 'localhost',
port: 6379,
// password: 'youshallnotpass', // if authentication required
});
client.on('error', (err) => {
console.error('Redis connection error:', err);
});
// Connect
await client.connect();
// Basic operations
await client.set('app:config:version', '1.2.3');
const version = await client.get('app:config:version');
console.log(`App version: ${version}`);
// Store JSON data
const userData = {
id: 123,
name: 'John Doe',
preferences: {
theme: 'dark',
notifications: true
}
};
await client.set('user:123', JSON.stringify(userData));
const storedUser = JSON.parse(await client.get('user:123'));
console.log('Stored user:', storedUser);
// Event log using list operations
await client.lPush('events:log', JSON.stringify({
timestamp: new Date().toISOString(),
event: 'user_login',
userId: 123
}));
await client.lPush('events:log', JSON.stringify({
timestamp: new Date().toISOString(),
event: 'page_view',
userId: 123,
page: '/dashboard'
}));
// Get recent events
const recentEvents = await client.lRange('events:log', 0, 4);
recentEvents.forEach(event => {
console.log('Event:', JSON.parse(event));
});
// Counter operations
await client.incr('stats:page_views');
await client.incrBy('stats:api_calls', 5);
const pageViews = await client.get('stats:page_views');
const apiCalls = await client.get('stats:api_calls');
console.log(`Page views: ${pageViews}, API calls: ${apiCalls}`);
// Pipeline operations (batch processing)
const pipeline = client.multi();
pipeline.set('batch:1', 'value1');
pipeline.set('batch:2', 'value2');
pipeline.set('batch:3', 'value3');
pipeline.expire('batch:1', 3600);
pipeline.expire('batch:2', 3600);
pipeline.expire('batch:3', 3600);
const results = await pipeline.exec();
console.log('Batch operation results:', results);
// Close connection
await client.quit();
Performance Benchmarking Examples
# Performance testing using memtier_benchmark
# Basic GET/SET operations benchmark
memtier_benchmark -h localhost -p 6379 --ratio 1:1 -n 100000 \
--threads=4 -c 20 --distinct-client-seed \
--key-prefix="benchmark:" --hide-histogram -d 256
# Read-only workload test
memtier_benchmark -h localhost -p 6379 --ratio 0:1 -n 200000 \
--threads=8 -c 30 --distinct-client-seed \
--key-prefix="readonly:" --hide-histogram -d 128
# Expiry keys test
memtier_benchmark -h localhost -p 6379 --ratio 1:0 -n 300000 \
--threads=2 -c 20 --distinct-client-seed \
--key-prefix="expiry:" --hide-histogram \
--expiry-range=30-30 --key-maximum=100000000 -d 256
# Memory efficiency test with large data
memtier_benchmark -h localhost -p 6379 \
--command "sadd __key__ __data__" -n 5000000 \
--threads=1 -c 1 --command-key-pattern=R \
--data-size=10 --key-prefix="memory_test:" \
--hide-histogram --random-data --key-maximum=1 \
--randomize --pipeline 20
Configuration and Tuning
# Memory limit and cache mode
./dragonfly-x86_64 --maxmemory=16gb --cache_mode=true
# Database count and network settings
./dragonfly-x86_64 --dbnum=16 --bind=0.0.0.0 --port=6379
# Logging and performance monitoring
./dragonfly-x86_64 --logtostderr \
--vmodule=dragonfly_connection=2 \
--alsologtostderr
# Snapshot configuration
./dragonfly-x86_64 --dbfilename=dragonfly_snapshot.rdb \
--dir=/data/dragonfly --save_schedule="*/10 * * * *"
# Replication setup (master)
./dragonfly-x86_64 --bind=0.0.0.0 --port=6379 \
--requirepass=master_password
# Replication setup (replica)
./dragonfly-x86_64 --bind=0.0.0.0 --port=6380 \
--replicaof=master_host:6379 \
--masterauth=master_password
Monitoring and Metrics
import redis
import time
def monitor_dragonfly_stats():
r = redis.Redis(host='localhost', port=6379, decode_responses=True)
while True:
info = r.info()
print(f"=== DragonflyDB Stats ===")
print(f"Connected clients: {info.get('connected_clients', 0)}")
print(f"Used memory: {info.get('used_memory_human', 'N/A')}")
print(f"Total commands processed: {info.get('total_commands_processed', 0)}")
print(f"Instantaneous ops/sec: {info.get('instantaneous_ops_per_sec', 0)}")
print(f"Keyspace hits: {info.get('keyspace_hits', 0)}")
print(f"Keyspace misses: {info.get('keyspace_misses', 0)}")
# Calculate hit rate
hits = info.get('keyspace_hits', 0)
misses = info.get('keyspace_misses', 0)
if hits + misses > 0:
hit_rate = (hits / (hits + misses)) * 100
print(f"Hit rate: {hit_rate:.2f}%")
print("-" * 30)
time.sleep(5)
if __name__ == "__main__":
monitor_dragonfly_stats()
DragonflyDB, with its innovative multi-threaded architecture, breaks through traditional Redis constraints and provides a true high-performance caching solution for modern multi-core environments.